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Abstract 

Biophysical atrial simulation can improve therapies by 

simulating ablative and pharmacological strategies, 

although their use is limited by their high computational 
cost. Simpler cardiac automata can achieve acceptable 

timeframes, calculating the Action Potential Duration 

(APD) from the previous Diastolic Interval (DI), although 

it is necessary to question whether this approach is 

sufficient for short- and long-term simulations.  

The analysis of 992 simulated activation protocols 

showed an expected increase of the APD with the previous 

DI interval. Short-term memory at long-term simulations 

was showed as the dependency of APD+1 with the previous 

activation (APD0): shorter APD0 provoked shorter APD+1, 

and this effect was comparable to the effect of previous DI. 

Independent prediction based on both APD0
 

and DI 

allowed better estimation of APD+1 values (1410 ms), 

compared to using DI alone (2919 ms, p=0.029).  

Atrial automata should consider short term memory, as 
duration of previous activations, to accurately estimate 

posterior APD in long-term simulations, to mimic the 

natural electrophysiological response.  

 

 

1. Introduction 

Cardiac arrhythmias at atrial or ventricular level are 
among the main causes of disease and mortality. Atrial 

fibrillation (AF) is the most prevalent cardiac pathology, 

affecting >10% of the elderly population [1].  Due to the 

lack of knowledge about the specific mechanisms initiating 

and perpetuating AF, choosing specific treatment for each 

patient is still a major clinical and economic problem. In 

silico models represent a great tool for guiding 

personalized medicine as they provide interesting insights 

on the individual AF manifestation. In particular, they 

were confirmed to be especially useful in diagnosing 

pathological situations [2], and in evaluating ablative [3] 
and pharmacological [4] strategies results. Numerous 

mathematical models describe cardiac functions in detail 

from both an electrophysiological [5] and a hemodynamic 

[6] point of view. 

Atrial simulations can be used to quantify the response 

of the patient electrophysiology against different scenarios, 

such as changes in activation location or frequency, ionic 

concentration, temperature, pH or drug effects [1]. These 

simulations are characterized through standard 

electrophysiological metrics, namely the Action Potential 
Duration (APD). In this regard, biophysical modelling [7] 

is among the most widely used and has been implemented 

by several solvers, for instance ELVIRA [8] and 

openCARP [9], that manage to accurately describe the 

transmembrane potential (TP), ionic concentrations or 

gating variables. However, this precision brings with it a 

high computational cost and long simulation times, due to 

the huge use of parameters and to the large number of 

systems of ordinary differential equations to be solved, that 

can compromise clinical diagnostic times. For this reason, 

the use of electrophysiological solvers with compatible 
diagnostic times are demanded, such as solvers describing 

the cardiac electrical characteristics by discrete states, so 

called cellular automata (CA) [10]. 

The aim of this work is to extend the use of a ventricular 

CA [11] to the atrial electrophysiology, by developing a 

new CA describing the specific atrial electrical activity. 

This atrial CA will be calibrated against classic and 

validated atrial biophysical simulations [5] in different 

stimulus scenarios. 

 

2. Materials and Methods 

2.1. Biophysical model  

Atrial biophysical simulations were performed with 

ELVIRA software using the Coutermanche atrial model 
[12] on a rectangular atrial tissue (0.3x20x0.025 cm, 2106 

cells, 0.25 mm inter-node distance, 0.01 ms of temporal 

interval) activated from the inferior front, see Fig. 1a. Fiber 

direction was included in the model along the large axis of 

the model with a longitudinal diffusion of 0.0035 S/cmpF 

and a longitudinal vs transversal relation of 0.35. For the 

analysis, three midline points of the slab of tissue were 

considered: one for the analysis of the Transmembrane 
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Potential curve (TP) and two for the measurement of 

Conduction Velocity (CV), as shown in Fig. 1a.  

Long-term S1-S2 pacing protocols were performed, 

corresponding to sequences of S1 intervals (340ms to 

1000ms, N=31 values), repeated 15 or 16 times before an 
S2 stimulus with values between 100ms and 1000ms 

(N=32 values). A total of 992 S1-S2 training protocols 

were simulated in 31 long-term simulations for a total of 

3720 simulated minutes (12030 minutes per simulation), 

in which the order and combination of S1 and S2 values 

were randomly selected.  

Transmembrane Potential (TP) curves were used to 

measure the APD and the Diastolic Interval (DI). APD was 

measured as the difference between the activation time 

(instant of maximal positive dV/dt) and the 90% of 

repolarization, the so-called APD90. APD0 and APD+1 

denote the last S1 and S2 activations respectively (see Fig 

1b). The DI was measured as the interval from end of APD0 

and the beginning of APD+1. Fig. 1b pinpoints exactly their 

corresponding values. 

Conduction velocity was measured as the space 

separating the measuring points (6 mm) divided by the 

difference in their activation times, see Fig. 1b. 

 

 
Figure 1. a) Rectangular atrial tissue used for biophysical 

simulations. Yellow and green nodes were used to measure 

APD and CV respectively; b) Transmembrane Potential 

curve of two nodes (red and black lines) with highlighted 

sections: APD0 (red), DI (green), APD+1 (yellow), and 

activation time difference between node (blue). 

 

2.1. Cellular Automata 

The biophysical simulations just described demonstrate 

accuracy and ease in analyzing the results. However, the 

computational time they require is high and therefore they 

cannot be used in the clinical field. Serra’s [11] presents an 

alternative method for modelling cardiac tissue 

electrophysiology, which is a spatially extended, event 
based, asynchronous cellular automaton, prepared for the 

analysis of ventricular tissues and geometries.  

Cellular Automata (CA), unlike biophysical models, 

consider only two main states for each piece of cardiac 

tissue: 0 (inactive, i.e., repolarized, and excitable) and 1 

(active, i.e., able to activate the neighbors). Each event 

simulated (activation, repolarization) is processed at the 

exact time when their occur and therefore there is no need 

of a granular time step.  
Transition from state 0 to 1 (activation) is triggered by 

previous activations of immediate neighboring nodes (26 

neighbors for hexahedral meshes). The exact instant of 

activation is calculated using the Fast-Marching algorithm 

[13] considering propagation velocity of a planar wave. 

The CV for this activation, as well as the APD+1 of the 

subsequent active state, is calculated from the previous 

states and DI of the calculated node. Transition from state 

1 to 0 (repolarization) is automatically triggered once the 

calculated APD+1 is over. Propagation waves are initiated 

by manually activating specific nodes.  

Calculation of individual values of CV and APD+1 for 
each activation is one of the most important steps of CA, 

and they are usually tuned summarizing experimental data 

into numerical functions. This work compares two 

strategies for CV and APD+1 calculation using 

experimental data from biophysical simulations: 

considering only previous DI value and summarizing the 

APD+1 values into restitution curves or considering both 

previous DI and APD0 values and summarizing the APD+1 

values into restitution surfaces.  

 

3. Results 

3.1. Biophysical model characterization  

Characterization of the APD metrics for the biophysical 
simulation can be observed in Figure 2a, where the APD+1 

is represented as a function of the previous DI. Single 

curve fitting produced an error of 2321 ms. This was 

provoked by the increase of the APD+1 with the previous 

APD0, as can be observed by the different curves fitted for 

each APD0 (color-coded). When APD+1 is summarized 

using both DI and APD0 (Fig. 2b), and therefore 

constructing a restitution surface, the error fitting was 

considerably lower (1014 ms, p<<0.001).  

Panel 2c shows the biophysical simulation 

characterization for the CV metric. In this case, the effect 

of the previous APD0 was almost inappreciable, and the 

simpler curve fitting showed similar error (2.94.6 cm/s) 

than the surface fitting using both DI and APD0 (3.05.6 

cm/s, p=0.87). 

 

3.2. Cellular automata simulations 

Using the CA we reproduced the simulations performed 

with the biophysical model. Computational time using the 

CA was in average 30 times faster than the equivalent 

biophysical solver: 10,9 vs. 327,3 seconds of computation 

time per second of simulated time, respectively. Analysis 
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of the biophysical simulations took five times longer than 

in CA due to the need to calculate APA-related values: 300 

sec compared to 60 sec. 

 

 
Figure 2. a) APD Restitution Curve highlighted for 

different values of APD0; b) APD Restitution Surface; c) 

CV Restitution Curve. 
 

Figure 3 shows an example of a biophysical simulation 

(panel a) reproduced by the atrial CA using both strategies:  

calculating APD+1 from previous DI (restitution curve, 

panel b) and calculating APD+1 from previous DI and 

APD0 (restitution surface, panel c). Whereas the APD 

value of the CA using the APD curve change for each 

activation, the automata with APD surface showed better 

correspondence in each simulated stimulus. 

 
Figure 3. Comparison of biophysical and CA simulations. 

a) Transmembrane Potential (TP) curve. Red dots: 
activation instant; green dots: 90% repolarization time. b) 

Atrial CA using restitution curve. c) Atrial CA using 

restitution surface. 

 

To confirm this individual finding on multiple 

simulations, two different analyses were performed. The 

initial theoretical deviation is shown in Figure 4a, 

indicating the deviation produced by the biophysical model 

characterization. This was calculated as the difference 

between the APD+1 values extracted from the biophysical 

simulations and the equivalent values obtained using the 

interpolation of the restitution surface or curve. As 
expected, considering both APD0 and DI, the APD+1 error 

resulted in values of 1014 ms, less than when considering 

DI alone, which was 2321 ms (p<<0.001), see Fig. 4a.   

Second validation strategy consisted of new 

simulations, not used for calculating the restitution 

surfaces/curves, with both the biophysical and CA solvers. 

New simulations performed (N=15) reproduced S1-S2 

protocols with ten S1s followed by one S2. S1 values were 

taken randomly between 300 ms and 1000 ms and S2 

values between 200 ms and 500 ms. Same pacing protocols 

were reproduced with the biophysical and CA solvers 

(surface and curve-based), in the case of CA solvers using 

the restitution surface/curves from the N=992 training 

data. These simulations considered cumulated deviations 
from consecutive beats.  

This experimental verification confirmed the difference 

between the two CA strategies: considering both APD0 and 

DI the mean error was 1410 ms, while considering DI 

alone, the mean error was 2919 ms, with p=0.029, see 

Fig. 4b. This implies that considering the value of earlier 

APDs improves the estimation of later APDs, and therefore 

in simulations of long duration it is necessary to consider 

the short-term memory of the simulator.  
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Figure 4. Theoretical (a) and Experimental (N=15) (b) 

error in APD by the atrial CA.  

 

4. Discussion and Conclusions 

This study reports on the developing of a cellular 

automaton able to reproduce the atrial electrophysiological 

activity [11]. The results of biophysical simulations on a 

rectangular piece of atrial tissue were characterized using 

DI, APD and CV values. These markers showed a 

difference in the dependence of APD+1 and CV on APD0 
which represents the short-term memory effect of the 

simulation. APD+1 varies as a function of the APD0 value, 

while CV does not change with it. Thus, it was decided to 

consider APD+1 as a function of DI and APD0 and CV as a 

function of DI alone. This reduced the error on the 

estimated APD+1 value by more than half, making it closer 

to the results of biophysical simulations. 

The results obtained make it possible to have a simulator 

with reduced computational time (x30) and with high 

precision in the simulated parameters, making it interesting 

for clinical use due to the possibility of predicting results 
in clinical diagnostic times.  

However, our investigations so far have only been 

applied to a piece of atrial tissue. They need to be extended 

to more realistic tissues including three-dimensional atrial 

geometries. Furthermore, the study was conducted by 

pacing protocols of different but constant values, and cases 

of irregular rhythms such as atrial fibrillation and 

tachycardia should be considered. 

Simulating the atria electrophysiological aspects is of 

great interest to diagnose pathological situations or to 

evaluate ablative or pharmacological strategies. Doing this 

in reasonable computational times compatible with 
diagnostic times is necessary. This work presented an atria 

cellular automata that allows APD prediction errors in 

clinical ranges, thanks to a careful analysis of the 

parameters and the simulation short-term effects, thus 

approaching the results of biophysical models. This 

improvement in prediction is accompanied by a thirty-fold 

decrease in computing time.  
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